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Thick fluid interface modeling
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Abstract

Basic concepts of interface and interfacial layer are first introduced. Orthogonal curvilinear coordinate analysis, used to study
zones depending of time, is presented. Classical 3D and 2D thermodynamical relations are reminded and second gradient for
introduced. General balance laws are written inside the interfacial layer and then, by using an asymptotic approach, balance laws a
for interfaces. The constitutive relations are deduced from thermodynamics of irreversible processes. More or less classical ex
given to illustrate the purpose.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Interfaces are often seen as geometrical surfaces.
these surfaces have internal physical properties. They
the seat of multiple exchanges with their surrounding,
the bulks in contact with them. Thermodynamical proper
and balance laws of interfaces are not always simple
obtain. It is often necessary to work with several sca
of analysis. At microscopic scale, 2D interfaces beco
3D interfacial layers, where thermodynamical relations
balance equations must be written. A review is presente
our book [1].

In order to be clear we use the two designations:interfa-
cial layer and interface. An interfacial layer is a region of
space where strong gradients of some properties take
in a thin layer. At this small scale, the medium is thre
dimensional with generally non-classical properties. At
macroscopic scale, theinterfaceis similar to a material sur
face with zero thickness, which exchanges matter, mom
tum and energy with the surrounding.

Interfacial modeling interested many authors. The st
that exist in a thin intermediate and inhomogeneous la
between gas and liquid phases can be described by
fundamental equations of van der Waals’s theory [2]
the temperature is below the critical temperature. In
famous paper of Cahn and Hilliard [3], the properties
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a flat interfacial layer between two coexisting phases
determined. In particular it is proved that its thickne
increases with increasing temperature and becomes in
at the critical temperature. Other papers give the
between the molecular aspect and the continuum mech
such as the review paper of Ono and Kondo [4] and the b
of Rowlinson and Widom [5]. The establishment of a dir
link between capillarity phenomena and the intermolec
forces is based on the statistical mechanics of syst
that are highly inhomogeneous on the scale of length
the range of these forces [5]. Much more sophistica
developments have been published in the basis of the
called density function theory, for example, in the paper
Evans [6].

Interfacial fluid layers endowed with internal capillari
were also studied by Casal [7,8], Germain [9], Casal
Gouin [10], Seppecher [11] and Gatignol and Seppec
[12]. Concept of interface extended to stretched flam
were considered by Klimov [13], Sivashinski [14], Clav
and Joulin [15], Prud’homme [16]. For the concept of
“interface” with internal energy per unit area, one can c
Delhaye [17], Scriven [18], Slattery [19]. Rocard [20] ga
a statistical approach and Casal, Gouin, Germain, Seppe
a macroscopic approach.

In many papers an emphasis is put on the different
terfacial velocities. For the interface without mass, disc
sions were driven by Landau and Lifschitz [21], Bedea
Albano and Mazur [22], Napolitano [23], Prosperetti [2
and, for interfaces with surface mass, by Ghez [25,
Prud’homme [27]. In relation with the concept of an “i
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Nomenclature

Aα
S interfacial generalized force

�e1, �e2 ,�e3 unit basic vectors of the orthogonal curvilinear
frame

gj chemical potential per unit mass of the speciesj

in a mixture
J α

S interfacial generalized flux
k wave number . . . . . . . . . . . . . . . . . . . . . . . . . . m−1

L0 hydrodynamic scale . . . . . . . . . . . . . . . . . . . . . . m
L

αβ
S interfacial phenomenological coefficient

n normal coordinate at small scale . . . . . . . . . . . m
p∗ interfacial pressure . . . . . . . . . . . . . . . . . . . . . . . Pa
q physical parameter
S entropy, interface
S3 coordinate surface
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
��T bulk viscous stress tensor . . . . . . . . . . . . . . . . . Pa
U velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

�V local fluid velocity . . . . . . . . . . . . . . . . . . . . m·s−1

w velocity of the surfaceS3 . . . . . . . . . . . . . . m·s−1

�W interfacial velocity equal to�V‖ + w�e3 . . . m·s−1

x, y, z Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . m

x1, x2, x3 curvilinear coordinates . . . . . . . . . . . . . . . . . . m
�x position of a point . . . . . . . . . . . . . . . . . . . . . . . . m
Y j mass fraction of speciesj

Greek symbols

δ0 interfacial thickness . . . . . . . . . . . . . . . . . . . . . . m
ε small parameter,= δ0/L0 � 1
λ capillarity coefficient . . . . . . . . . . . N·kg−2·m−6

ψ any property per unit mass
ξ normal coordinate at any scale . . . . . . . . . . . . . m
�ξ unit normal to the interface
ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

σ surface tension . . . . . . . . . . . . . . . . . . . . . . N·m−1

��Σ bulk stress tensor . . . . . . . . . . . . . . . . . . . . . . . . Pa
❏ϕ❑ jumpϕII − ϕI

Subscripts

1,2 both sides for superposed fluids
I, II lower and upper limits of an interfacial layer
, i space derivative∂/∂xi

‖, S parallel to the interface
⊥ normal to the interface
d
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terfacial layer”, Ishii [28], Gogosov [29], Sanfeld an
Steinchen [30] utilize true quantities, and on the c
trary, Landau and Lifschitz, Meinhold and Heerlein [3
excess quantities. The concept of dividing surface
utilized by Gibbs [32], Slattery [33], Defay et al. [34
Many authors have established interfacial balance e
tions, but not always with the desirable strictness. One
here to point out some crucial problems and suggest s
tions.

2. Interface and interfacial layer

The concept of an interface is relative. Some mate
surface seams very thin at a given scale and appears
thick at a smaller one (Fig. 1). As examples of interfac
layers and interfaces, one can mention various syste
a fluid layer endowed with capillarity and an interfa
with surface tension, a thin layer with diffusion of spec
between two miscible fluids, and so on. One considers
only fluid interfaces, i.e., themselves fluid, without rigidi
and located between bulk fluids.

Modeling of such interfaces means establishing equat
of material surfaces(2D balance equations) and closing the
obtained system by constitutive relations.

2D interfacial quantities can be deduced from 3D ana
sis, by integration across the interfacial layer. Then, inte
cial quantitiesψa andψS are deduced from local 3D quan
e

:

ties by integration between the boundaries of the interfa
layer. It gets

ψa = ρaψS =
ξII∫

ξI

ρψ dξ (1)

with the surface density

ρa =
ξII∫

ξI

ρ dξ (2)

Applying (1) to the fluid velocity�V , it gets

ρa
�VS =

ξII∫
ξI

ρ �V dξ (3)

So �VS is the mean fluid velocity in the interfacial fluid
defining the velocity of the interfaceS at each point.

To calculate the integrals of the right hand membe
is sometimes necessary to apply an asymptotic expan
method and to use a new coordinaten at smaller scale tha
ξ with dξ = εdn

ψa =
ξII∫

ξI

ρψ dξ ∼= ε

+∞∫
−∞

ρψ dn (4)
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Fig. 1. Interface and interfacial layer.

3. Orthogonal curvilinear coordinates

It is generally convenient to consider the interfacial la
as a stratified structure. On each surface of this structur
suppose that the value of a characteristic parameterq (local
density, temperature or concentration) is constant. Use
system of orthogonal curvilinear coordinates can be m
and each surface of the stratified structure, on which
characteristic parameterq remains constant, can be seen
a coordinate surfaceS3(x3, t) or S3—obtained for a given
value ofx3 at timet .

Let us consider the following moving curvilinear syste

x = x(x1, x2, x3, t)

y = y(x1, x2, x3, t)

z = z(x1, x2, x3, t)

or �x = �x(x1, x2, x3, t) (5)

x, y andz being the Cartesian coordinates in an orthonor
basis(�i, �j, �k), x1, x2 andx3 the curvilinear coordinates an
t the time. We call�hi , the vector of components (x,i ,y,i ,z,i).
For an orthogonal curvilinearsystem of coordinates, th
vectors�hi , �hj (i �= j ) are orthogonal. Dividing by the norm
|�hi | = hi , we obtain the normalized vector�ei = �hi/hi and
we define the curvilinear abscissa by dXi = hi dxi (Fig. 2).
The mean curvature of surfaceS3 is then

1

δS3

∂(δS3)

∂X3
= �∇ · �e3 = 1

h3

(
h1,3

h1
+ h2,3

h2

)
(6)

whereδS3 is a current surfaceS3 element.
Projection operators can be defined [1] (for instance,

define��I⊥ = �e3�e3, and��I ‖ = ��I − �e3�e3), and a local velocity
Fig. 2. Curvilinear orthogonal coordinates; coordinate surfaces.

Fig. 3. Velocities inside the interface layer.

�W inside the interfacial layer is introduced (Fig. 3) by t
formula

�W = �V‖ +w�e3 (7)

with

�V‖ = ��I ‖ · �V ,
∂ �x
∂t

≡ �ht , w = �e3 · �ht

The stretch of a surfaceS3 moving locally at velocity �W is
then

1

δS3

d �W(δS3)

dt
= �∇ · �W − �∇⊥ · �W = �∇‖ · �W (8)

with �∇⊥ = ��I⊥ · �∇, �∇‖ = ��I ‖ · �∇ and where d�W/dt stands
for the convective derivative associated to�W . Quantities
defined by (6), (7) and (8) are very important for the interfa
description because they have physical meaning.

4. Thermodynamical relations

For the bulk and the interfacial layer in the case o
classical fluid mixture withN species, the internal energ
E of a given volume of fluid is an order one homogene
function of its entropyS, its volumeV and of the masse
of speciesmj , which are extensive quantities. This give
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for the unit mass, the Euler, Gibbs and Gibbs–Duhem w
known relations:

e = T s − pv +
N∑

j=1
gjY j

de = T ds + p d(1/ρ) +
N∑

j=1
gj dY j

0 = s dT − v dp +
N∑

j=1
Y j dgj

(9)

In (9),Y j is mass fraction andgj the chemical potential pe
unit of mass of the speciesj . For the 2D interface, usua
thermodynamical relations read

eS = TSsS + σ/ρa +
N∑

j=1
g
j

SY
j

S

deS = TS dsS + σ d(1/ρ)+
N∑

j=1
g
j
S dY j

S

0 = sS dTS + (1/ρa)dσ +
N∑

j=1
Y

j

S dgj

S

(10)

In the case of 3D interfacial fluid layers with intern
capillarity, and taking a one component fluid for simplici
internal energyE of the stratified layer, for a volumeV
with a small thickness.ξ around a coordinate surface,
an order one homogeneous function of quantitiesS, V , of
the massm, and of a complementary extensive variableS
which is homogeneous to an area, but is not equal to the
of the part ofS3 contained in the considered volume. O
hasS = ∫

V
1
v
|dv
dξ |dV , and the internal energy per unit ma

becomese = e(s, v, |dv
dξ |).

One can write

e = T s − pv + Λ

∣∣∣∣dv

dξ

∣∣∣∣ + g

de = T ds − p dv + Λd

∣∣∣∣dv

dξ

∣∣∣∣
0 = s dT − v dp +

∣∣∣∣dv

dξ

∣∣∣∣dΛ + dg

(11)

More usually, one write [1,6]

e = e
(
s, ρ,

∣∣ �∇ρ
∣∣2)

de = T ds − p d

(
1

ρ

)
+ λ �∇ρ · d

( �∇ρ
) (12)

whereλ is defined as the capillarity coefficient [1].

5. General balance law

The local form of the balance equation for any prope
whose volumetric value is denoted byρψ , is

d �W(ρψ)

dt
+ ρψ �∇ · �W + �∇ · [ �J + ρψ

( �V − �W)] = ρφ (13)

where velocity�W is defined by (7). An integration of the tw
sides of (13) across the interfacial layer leads to the bala
law for the 2D interface [1]
Fig. 4. The different velocities on the 2D interfaceS.

d �WS
(ρaψS)

dt
+ ρaψS

�∇S · �WS

+�( �J + ρψ
( �V − �WS

)) · �ξ�+ �∇S · �Ja‖ = ρaφS (14)

where �∇S is the operator�∇‖ taken atx3 = 0, and �ξ is
the unit normal�e3 to the surfaceS = S3(x3 = 0), with
definitions (1) to (3) for the interfacial variables,�WS being
defined by (3) with �W in place of �V , and with the flux
�Ja = ∫ ξII

ξI
[ �J + ρψ( �V − �WS)]dξ . The average velocities ar

shown on Fig. 4.
General surface balance law (14) can be applied to ma

of species and to total mass. An alternative form of (
may then be deduced by using the mass balance an
introducing the mass flow ratėm = ρ( �V − �WS) · �ξ

ρa
dSψS

dt
+ �

J⊥ + ṁ(ψ − ψS)
�+ �∇S · �Ja‖ = ρaφS (15)

and may be applied to momentum, total energy, inte
energy and entropy [1].

6. Interfacial constitutive relations

6.1. 2D closure relations

Using mass, species and internal energy balance e
tions deduced from (15) and using the relations of sys
(10), an interfacial Clausius–Duhem inequality is then w
ten in which it appears a sum of products of terms of ze
one and two tensorial order terms [1]. In fact, the tw
dimensional surface entropy production.a is such that the
surface dissipationTS.a has the symbolic form:

TS.a =
m∑

α=1

Aα
SJ α

S � 0 (16)

Each product corresponds to an irreversible phenomena
Aα

S andJ α
S represent the generalized forces and fluxes.

This result suggests applying the general principles
Irreversible Thermodynamics [35] and writing linear closu
relations between generalized forces and fluxes of s
tensorial order

J α
S =

m∑
L

αβ
S Aα

S (17)

β=1
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This method is usually applied to classical problems
surfaces without mass [1], but with surface tension.
equilibrium, the momentum equation is the Laplace law

pII − pI = −σ �∇ · �ξ
Out of equilibrium, the momentum equation becomes

�
ṁ �V �− � ��Σ� · �ξ − �∇S · ��Σa‖ = 0 (18)

with ��Σ for the bulk stress tensor and��Σa‖ for the interfacial

stress tensor. Tensor��Σa‖ may contain surface viscositie
terms [33].

Marangoni effect, Bénard–Marangoni instability [36
surface heat transfer, evaporation–condensation, near-
librium surface chemical reactions, may be studied with
method.

CoefficientsLαβ
S of relation (17) are generally deduce

from molecular theory and experimental measurements.
previous method is no more valid for material surfa
notably far from equilibrium, but constitutive relations c
be found in the literature in specific cases, as for va
recoil [37–39], adsorption–desorption, and surface chem
reaction with non-linear kinetics.

6.2. 3D closure relations

Some situations cannot be directly studied using sur
equations, and a preliminary study of the interfacial la
behavior is necessary. Fluid layers with capillarity m
be considered as 3D interfacial layers, and the sec
gradient method utilized [1,7,11]. For such a fluid inside
interfacial layer far from any wall, and assuming that it
without dissipation

��Σ = −p∗��I − λ �∇ρ �∇ρ (19)

In simple cases it is possible to connect surface tensionσ to
capillarity coefficientλ [11], writing

σ =
ξII∫

ξI

−p∗(ξ)dξ ∼=
ξII∫

ξI

λ
∣∣ �∇ρ

∣∣2 dξ (20)

Fluid with capillarity can also be applied near a wall. This
the case for some wetting problems [40,41].

For some generalized interfaces, as premixed fla
with high activation energy [13–16], shock waves a
relaxation zones behind shock waves [1,42,43], interfa
layer instability between two miscible fluids [44], interfac
layer instability in a pure heated supercritical fluid [4
some shear layers [46], it is possible to deduce sur
properties. But this results from a detailed study of
interfacial layer, which obeys generally to linearized (h
and species diffusion, viscosity) or non-linear (chemi
kinetics) classical constitutive relations.

For premixed flames with high activation energy, the
tained combustion velocity is a linear function [15] of su
face stretch�∇S · �WS as defined by (8), but in strongly turbu
lent flows the stretch dependence becomes non-linear.
i-

(a)

(b)

Fig. 5. Amplification factor for two semi infinite superposed fluid
without gravity: (a) In inviscid fluids with surface tensionσ , S = σ

ρ1+ρ2
,

D = ρ1ρ2(U1−U2)
2

(ρ1+ρ2)
2 [1]. (b) With no surface tension but a linear veloci

profile through the gaseous boundary layerr2 = ∞: and: O S2 = 1;
� S2 = 10−1; ✸ S2 = 10−2; × S2 = 10−3, r2 = U2/U1, S2 = ρ2/ρ1
(Raynal 1997 [46]).

In the case of interfacial layer with species diffusi
between two miscible fluids, but also in the case of sh
layers with momentum transfer, the stability analysis sh
an influence of the interfacial layer on the growing cu
(ωi in function ofk) similar to the one of surface tension o
Rayleigh and Kelvin–Helmholtz instability growing curv
In Fig. 5a, and similarly in Fig. 5b, there is a domain
instability for ωi > 0 with a maximum ofωi and a cut-off
wave number. This suggests inserting of an effective sur
tension in the second case.

7. Conclusion

Other relevant questions can be considered.
A first questiondeals with the description of deformatio

inside the interfacial zone. Interfacial zone appeared
stratified region. This is a relatively comfortable situatio
where the equation for area deformation can be dire
deduced from interfacial kinematics written in curviline
coordinates. Indeed, the material derivative ofΣ = δS3/δV ,
the density of area per unit volume of the structured la
reads (see (8))
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1

Σ

d �WΣ

dt
= 1

δS3

d �WδS3

dt
− 1

δV

d �WδV

dt

= �∇‖ · �W − �∇ · �W = −�∇⊥ · �W (21)

This relation (in an other form) is utilized by Candel a
Poinsot [47] for flames. In turbulent burning flows, avera
quantities are introduced and source terms appear on r
hand side of (20). An other case is the one of two-ph
mixtures. Lhuillier, Morel and Delhaye [48] introduce
distribution functionδI for the interfacial areaΣ per unit
volume of the mixture. Writing a balance equation forδI ,
a source termγ appears, which vanishes in the case
our simple stratified interfacial layer. One need certainl
deepening of this problem, to understand better why Eq.
remains valid in so much various situations.

Thesecond questiondeals with numerical solving of in
terface problems. The 2D description often leads to disc
tinuities, and it is difficult to solve numerically this type
problem. Then, some authors try to obtain continuous e
tions even in discontinuous situations. Phase field mo
have been described for solidification of alloys. The in
face is considered as a transition region where averaged
quantities weighted by the liquid and solid volume fractio
are introduced. At macroscopic scale, we find an enth
method [49] whereas at smaller scale, balance equation
deduced by minimization of free energy in functional ana
sis [50]. Jamet et al. [51] use a second gradient me
with an artificially thickened interface, and Jamet and
titjeans [52] apply phase field models to interfaces of dif
sion. Research attempt would certainly be useful on the t
“Phase field methods for fluid interfaces”.

To conclude, we can say that in this paper, interfac
modeling of fluid was presented in such a manner
2D description result generally from 3D analysis. Ma
examples where briefly presented. The reader will fin
more detailed presentation in the book [1]. Other exam
of application could certainly be considered.
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